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Chapter 1

INTRODUCTION

The problem of electromagnetic transmission through apertures
in conducting planes of finite thickness has been the object of several
investigations. This problem is important because of the need to de-
termine the effects of wall thickness on coupling through slots and
holes in waveguides and cavities. Several quasi-static solutions have
been developed, which include expanding the field in terms of the char-
acteristic functions of Laplace's equation [1], using asymptotic ex-
pansions to solve a set of integral equations [2], and variational
methods [3,4]. These solutions are usually valid when the radius of
the circular aperture or the width of the slot is small compared to
the wavelength. The effects of wall thickness have also been measured
for some waveguide coupling problems [5}, and for a long slot in a
thick screen [6,7,8].

The slit (slot of infinite length) of rectangular cross section
in a thick conducting screen is the object of most of the theoretical
investigations. The fields in the slit region are usually expanded .
in terms of the parallel plate waveguide modes, while the fields in
the half space regions have various integral representations. Enforcing
continuity of the tangential field at the aperture faces, one obtains a
coupled set of integral equations. The formulation and solution of
these equations make use of a variety of techniques, such as the use of

Weber-Schafheitlin discontinuous integrals [9,10], Wiener-Hopf methods

e AN L
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and generalized matrix techniques [11], Fourier integral methods [12,13],
Green's function methods [14,15], and the equivalence principle and
moment methods [16]. Another procedure is to expand the fields in the
half space regions in terms of the characteristic functions of the
Helmholtz equation in elliptic cylinder coordinates [17,18]. A doubly
infinite set of linear algebraic equations is then obtained for deter-
mining the coefficients of expansion.

A slightly more general problem is treated in [19], where the
thick ground screen is an infinite slab with finite conductivity.
Analytic properties of finite Fourier transforms are used to reduce
the problem to the solution of a single variable Fredholm integral
equation of the second kind. A slit of arbitrary cross section is
treated in [ 20] whereby the scattered electric field is expressed as
an integral over the electric current induced on the infinite conduc-
tors. By requiring the total tangential electric field to vanish at
a finite number of points on the conducting contours, a system of
algebraic equations is obtained which determines the electric current
at these points,

Problems of this nature are also of interest in the area of
electromagnetic compatibility. If the slit region is filled with a
conducting material, it might represent a gasket between two perfectly
conducting walls. A different analysis than the above mentioned methods

is then possible using approximations and models for the transmission

mechanism [21],
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This report considers the problem of a filled slit of arbi-
trary cross section in a thick conducting screen. The formulation
presented here is basically a specialization of that given in [22]
for a class of aperture coupling problems. The basis of the method
rests on the equivalence principle, as it is defined and used in
[23,24], which is used to break the problem up into three isolated
regions. This isolation is achieved by the use of equivalent elec-
tric and magnetic current sources, which radiate in unbounded space
and are constrained to give the correct fields in each region. An
operator equation is thus obtained for each region in terms of the
equivalent sources as the unknowns. These operator equations are
solved simultaneously via a Galerkin procedure [25,26] after suit-
able sets of expansion functions are chosen to represent the un-
knowns. Some immediate advantages of this formulation are summar-
ized as follows:

1) The necessary equivalent sources exist on a finite

two-dimensional contour.

2) These equivalent sources radiate into unbounded,

homogeneous space and hence their fields have a
simple retarded potential representation.

3) The system of three simultaneous operator equations

has a unique solution at all frequencies.

4) The cross section of the slit may be an arbitrary

shape and filled with lossy material.

The operator equations are derived in detail in Chapter 2,

where an argument for the uniqueness of solution is also given.
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Each polarization is handled separately in Chapters 3 and 4., The
term transverse electric as used here means that the electric field
lies in the plane of the slit cross section, and transverse magnetic
means that the magnetic field lies in the plane of the slit cross
section.

Once the tangential fields over the aperture faces are
known, several transmission characteristics may be computed. These
are defined in Chapter 5, where they are written in terms of a
measurement vector and as such are referred to as measured quantities.
A slit impedance and polarizability are also defined which, when the
slit width is electrically small, characterize the slit.

An alternate method of solution is presented in Chapter 6
when the slit cross section is composed of a number of rectangular
regions. These are viewed as a sequence of two-dimensional, infinitely
long, rectangular cavities, each coupled to the other by an aperture.
The method is an extension to that presented in [16], and is referred
to here as a modal solution. It has the advantage that each rectangu-
lar region may be filled with different material.

When the slit cross section is rectangular, an approximate
solution is developed in Chapter 7 based on assumptions concerning
the equivalent magnetic current. This approximate solution has the
advantage of yielding a greatly simplified numerical solution, accurate
when the material filling the slit is dense. A material is said to be

dense when the intrinsic wavelength in the material is much smaller

than that of free space.




Chapter 2

PROBLEM FORMULATION

2.1. Derivation of Operator Equations

The problem to be considered is shown in Fig. 1, where
electromagnetic transmission occurs through a slit of arbitrary
cross section in a perfectly conducting plane of finite thick-
ness. The slit cross section is composed of the straight lines
Fl and F3, which are the two aperture faces, and the lines P2 and
TA, which are arbitrary in their specification. The characteristic
dimensions of the slit cross section are shown in Fig. 1. This
problem is strictly two-dimensional in that everything is invar-

jot

iant in the z direction. A time dependence of e is assumed

throughout.

In the original problem, (gifgé,.géfgé) is the total field

in region a, (EP, EP) is the total field in region b, and (§F, BF)
is the total field in region c. The field (E}, g}) is that which
would exist if the sources (gi, gi) were to radiate into unbounded,
homogeneous space with (ua, ea) everywhere. The equivalence principle
[23,24] is used to isolate the three regions by postulating equiv=
alent sources to support the fields in these regionms.

The equivalent sources for region a consist of an electric
current sheet gé which exists everywhere on the plane at x = 0 and a
magnetic current sheet g} which exists only over the aperture face Fl.

This current distribution radiates into unbounded space with (ua, ea)
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everywhere and in the presence of the sources Qli, g}) to give the

fields (E. + E®, H'

+ gé) to the left of the x = 0 plane and zero

field to the right. This situation is shown in Fig. 2a. The con-

dition that the tangential magnetic field is zero just to the right

of the plane at x = 0 is written as

ha —a A& = A y

The operator Lﬁq gives the magnetic field of sources radiating in
unbounded space with (uq, eq) everywhere. The permittivity eq and
permeability uq are, in general, complex numbers. The index q stands
for a, b, or ¢ and the subscript t denotes the tangential component
found by the usual -fi X A X operation. This magnetic field operator

is defined explicitly in terms of electric and magnetic current sources

by the equation [24, p. 130]

8x 1MW = £ 2I@ -5 J A x 3@« ¥ RD G lemrt e
C

Es o 1 2)
- Ax @+ 5TV ) | ME) BTk [rox et (2-2)
C
Here the domain of the integrals, which is usually given by J and

4

M, is restricted to the contour C =121Pi in anticipation of the fact
that, when Eq. (2-1) is enforced at Pl’ not all of the electric cur-
rent on the plane x = 0 contributes to the tangential magnetic field
there. The minus sign is used when the field point, r, is on the fﬁ

side of C(q=a or c¢) and the plus sign is used when q=b. The elemental

[
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arc length is dt', 1 is a unit dyad, kq = w/ﬂ;Ea , nq = /ﬁ;7§§ ,
Héz) is the Hankel function of second kind, order zero, and r' de-
termines a point on the source distribution.

The equivalent sources for region c are given by an electric
current sheet g? which exists everywhere on the plane at x = d and a
magnetic current sheet g? which exists only at the aperture face T3.
This current distribution radiates into unbounded space with (uc, Ec)
everywhere to produce the field (EF, EF) to the right of the plane
at x = d and zero field to the left. This situation is shown in Fig. 2b.

The condition that the tangential magnetic field is zero just to the left

of the plane at x = d is written as

Lhc(gg, M3

—t — ) = _0_ (2"3)

where L:c is obtained from Eq. (2-2).

The true solution to the problem in Fig. 1 requires that the
tangential electric and magnetic fields be continuous at the aperture
faces Fl and F3. Hence the equivalent sources for region b consist of
magnetic current sheets fgl on Fl and -ﬁ? on F3 along with an electric
b a

4
iglri, where J° = J on

This distribution of currents on the contouf C

current —g? which exists on the contour C =
b c

Fl and J J” on F3.

radiates into unbounded space with (ub, eb) everywhere to produce the

field (EP, EP) inside C and zero field outside. This situation is

shown in Fig. 2c. The condition that the tangential magnetic field be

zero just outside the contour C is written as

8 x 1%, ' ) =0 (2-4)




-

T TR Vi

where th is obtained from Eq. (2-2). Alternatively, the condition
that the total tangential electric field be zero just outside the

contour C is written as

eb b 1 3
Lt (-J°, M -M)=0 (2-5)

where the operator Léq gives the electric field due to sources
radiating into unbounded space with (uq, eq) everywhere and is

defined by the equation [24, p. 130]

dx 19,1 = F 1 M) +?lj‘ J A x M(x') x ¥ uéz)(kqlg-ghdc'
C
k n
~saxa+rbeve [aey i@l @6
& : C &,
q

where the same remarks hold as those following Eq. (2-2) except that
the plus sign is used when q = a or ¢ and the minus sign is used when
q = b.

An alternative electric field equation could also have been
written in place of Eqs. (2-1) or (2-3). This is not done, however,
because the electric currents g? and QF over the infinite portions of
the planes at x = 0 and x = d contribute to the tangential electric
field on Fl and F3 respectively. These electric currents do not con-
tribute to the tangential magnetic field on Fl and F3, and hence do
not appear in Eqs. (2-1) and (2-3) when they are enforced on Fl and
F3 respectively. The necessary unknown equivalent sources, then,
consist of gl, §3, and QP which occupy a finite domain given by the

closed two-dimensional contour C.

10
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2.2. Uniqueness of Solution

The solution to the operator equations (2-1), (2~3), and
either (2-4) or (2-5) will be unique if the sets of homogeneous

equations consisting of
L?@%, M) =0 (2-7)

and either (2-3) and (2-4) or (2-3) and (2-5) have only the trivial
solution. Thus it remains to show that if the sources are removed
from the problem in Fig. 1, the fields everywhere will collapse to
zero.

Equation (2-7) states that the tangential magnetic field
equals zero just to the right of the plane at x = 6 due to gé and ﬁl
radiating in unbounded space with (ua, Ea) everywhere. This current
distribution also creates the fields (Eé, Eé) everywhere to the left
of the plane at x = 0. This situation is shown in Fig. 3a. Equations
(2-4) and (2-5) state that the tangential electric and magnetic fields
are zero just outside C due to fgl, -M, and fQP radiating in unbounded
space with (ub, eb) everywhere. This implies that the electromagnetic
field everywhere outside C is zero while the field inside C is given by
(g?, 5?). This situation is shown in Fig. 3b and it is noted that
either of Eqs. (2-4) or (2-5) is sufficient to produce this situation.
Equation (2-3) states that the tangential magnetic field equals zero just
to the left of the plane at x = d due to gf and §3 radiating in unbounded
space (uc, sc) everywhere. This current distribution also creates the

fields (EF, EF) everywhere to the right of the plane at x = d. This

situation is shown in Fig. 3e.

11
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Fig. 3c. Situation of Eq.(2-3),

3% =P at Py
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Fig. 3d. Composite situation.
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Now the composite situation shown in Fig. 3d is considered
where the fields of Figs. 3a - 3c have been superposed. From Fig. 3a,
the tangential component of Eé is zero everywhere at x = 0 except on
Fl and from Fig. 3c, the tangential component of EF is zero every-

where at x = d except on T From Fig. 3b, the tangential component

3
of EP is zero at the perfectly conducting contours FZ and PA' Figures
3a and 3b indicate that there are no equivalent sources at Fl in Fig. 3d
and Figures 3b and 3c indicate that there are no equivalent sources at
F3 in Fig. 3d. The conclusion is that the tangential electric field

is zero everywhere on the boundaries of the perfect conductors in the
composite situation of Fig. 3d and also that the region outside the
perfect conductors is source free. Thus the fields in Figs. 3a-3c are

collapsed to the null field and hence the solution to Egs. (2-1), (2-3),

and either (2-4) or (2-5) is unique.

2.3. Specification of Slit Cross Section, Basis Functions, and

Symmetric Product

The contour C which determines the slit cross section is
approximated by a number of straight line segments each of length ACn
for integers n=1,2,...,N5~1. This is shown in Fig. 4. The integers
Ni’ i=1,2,3,4, or 5 are assigned to the beginning and end points of
each Fi with N1 = 1 so that each Fi is broken up into Ni+1 - Ni seg-

ments. Each segment ACn has a transverse directed normal ﬁn and

tangent £ such that
-1
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Fig. 4. Contour C approximated by NS

£

(xm+1’ ym+1)
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Fig. 5. Typical segments AC_ and AC_. R is defined as a vector
m n’ —m,n

s

from the midpoint of ACn to the midpoint of ACm.
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=2 (2-8)

Am
:l:b

It is useful to introduce the parameter t which represents the arc
length along C from the origin to any point on C. Thus the sub-

scripted values of t are given by

nil

t = AEH (2-9)
R oo i

for n=2,3,..., N_ and t. = 0. Two typical straight line segments are

5 1

shown in Fig. 5 where the vector Bm,n is also defined.

For each polarization, both transverse (£) and longitudinal
(2) directed current sources are present. The transverse currents
lLave a charge associated with them and it is desirable, though not
necessary, that their representation be differentiable. The z directed
currents have no such requirements but sometimes become unbounded at
edges. The longitudinal expansion functions, then, should not be con-
strained to be continuous at edges. For the sake of simplicity, the
edge condition [27,28] will not be built in a-priori into the repre-

sentation of the unknown currents. With these considerations in mind,

then, two different sets of expansion functions are defined as

m-1 . <
S Em-l for tm—l S &
m m-1
£ (t) = (2-10)
t:“tm*i-l
£ Eor £ <t < €
¢ =E ~m i ===t
m m+}

0 for t elsewhere




g_m(t) = (2-11)

0 for t elsewhere

for m=1,2,..., N5-1 and with to = tN5-1°
Lastly, in order to carry out the method of moments procedure,

it is necessary to define a symmetric product as

B B = J &k g (2-12)
C
where A and B are vector functions defined on the two dimensional con-

tour C.

2.4. Reduction of Operator Equations to Matrix Equations

The method of moments [25] is applied somewhat mechanically
to solve either one of two possible sets of simultaneous operator equa-
tions. These consist of thesets (2-1), (2-3), and (2-4) or (2-1), (2-3),
and (2-5). The two different polarizations are considered separately
in Chapters 3 and 4. The first step is to assume that the unknown cur-
rents can be represented by a linear combination of vector basis func-
tions defined on the two-dimensional contour C. These may be chosen from
the sets defined in Section 2.3. Thus the equivalent currents are

represented in general by

1 1 :
B o=]V g, (2-13)
n
3_ v o3 )
M = E Voo, (6) (2-14)
b
=11 B (t) (2-15)
n




b b

where Vi, Vi, and In are unknown complex coefficients to be determined.
The functions 91’ g3, B are vector basis functions defined on Fl, T3,
and C respectively and will be chosen from the sets (2-10) and (2-11)
depending on the polarization considered.

The next step is to substitute Eqs. (2-13) - (2-15) into the
operator equations and '"test" each equation on that portion of the con-
tour C over which it is valid. This is done by taking the symmetric
product of the operator equation with "testing" functions defined on the
contour C. It is desirable to choose testing functions which are in the
range of the operator. The operator equations have been written in such
a way as to allow the use of the basis functions for the testing procedure.
This is computationally convenient in that several matrices become sym-

metric. Thus Eq. (2-1) is tested with at Fl, Eq. (2-3) is tested with

gim

[ at F3, and Eqs. (2-4) and (2-5) are tested all along C with ém' This

procedure results in two possible sets of simultaneous equations which are

written in matrix form as

e "
[(v*1 (o1 ol vt [+
(o1 (¥ (v Y| «16 (2-16)
hl h3 h >
(Y7 Y1 (T [no1] _ESJ
or
B - <"1 .3
¥*] (o1 [uh v i
(o] ¥ (¥ il I (2-17)
LI_Y‘*l] (%3 (1% nil |9

The matrix [ 0 ] stands for a matrix of zeros and 3 stands for a column

vector of zeros. As shown earlier, either (2-16) or (2-17) provide a

17




unique solution to the original problem.

by the general formulas:

Yel
mn

e3
mn

e
mn

(=

(=

eb
L @, 0>

The matrix elements are given

(2-18)

(2-19)

(2-20)

(2-21)

(2-22)

(2-23)

(2-24)

(2-25)

(2-26)

(2-27)

The linearity of the operators Léq and Lﬁq has been used in the above.

Scaling has also been done with ko, the wavenumber of free space, and

no, the impedance of free space, so that the computed matrix quantities

are dimensionless. The minus signs are kept in (2-18)-(2-27) so that




%
i

the Y matrices may be identified as the usual admittance matrices
obtained in the network analogue. The non-zero elements of the

excitation vector are given by

= i
Im = k.orlo <g1m, Et> (2-28)

If Eq. (2-16) is partitioned and the vector nof is elimi-

nated, one obtains

e - ot Y o olprhy iy -l #
= (2-29)
- o3y v° - udrrhy g3y | |33 3

assuming that the inverse [Th]_1 exists. A similar set of equations
may be obtained from Eq. (2-17) under the condition that [Te]_1 exists.
These inverse operators do not exist at all frequencies, however, since
[Th] and [Te] arise from the magnetic and electric field formulation of
scattering by a closed perfectly conducting contour. These operators
become ill-behaved at certain resonant frequencies. Equation (2-29)
and its counterpart, obtained by partitioning Eq. (2-17), do not have

a unique solution at all frequencies. They do, however, have the con-

venient network coupling representation as shown in Fig. 6.
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Chapter 3

TRANSVERSE ELECTRIC (TE) CASE

3.1. Expansion of the Equivalent Currents

For the TE polarization, there is only a z component of magnetic
field and transverse components of electric field. The equivalent mag-
netic currents are z directed and satisfy no boundary conditions on Fl
and F3. The equivalent electric currents are transverse directed and are
continuous all along the contour C. With this in mind, the functions of
Eq. (2-11) are chosen for [ and 23 of (2-13) and (2-14) and the func-

tions of Eq. (2-10) are chosen for B of (2-15). The unknown currents are

then expanded as

N,-1
= § dam (3-1)
u o
n=1
N, -1
¥ o % v g (1) (3-2)
i i
n=
3
and
2 Ns-l
4= 3 % £ &) (3-3)
n=1
The formulas for the matrix elements of (2-16) and (2-17) may now be
obtained from Eqs. (2-18) - (2-28). They are given as follows where
the ranges of the indices m and n are specified:
a ha tims NZ“1
T TR L LG g e (3-4)
- =72
N, <m < N, -1
c he ) -
Y = -k n < ) L (0_: )> (3-5)
mn oo By = &y N3 Z % 5-N4_1

21

RPE N




L™, g )>

L, g )>

hb
LV, 0)>

L2, g )>
L:b(g, 8)>

eb
>
L, D




3.2. Formulas for TE Matrix Elements

Equations (3-4) - (3-13) define the elements of the matrices in
Eqs. (2-16) and (2-17). Explicit formulas will be derived here for
these symmetric products using the definitions of the operators given
by Egs. (2-2) and (2-6) and the expansion functions (2-10) and (2-11).

Equations (3-4) and (3-5) may be computed by examining the inner pro-

duct
Py = - kT, g 100 )
o 1 o+l
- - o I B (6) XA x J gn(t')Héz)(kalzm(t)-£n(t)l)dt'dt (3-15)
tm tn

o & 2 : B ¥ o 2
m—l,2,...,N5 1. Using the variables u = AC ty @ = ACnt , and

Bm 5 defined in Fig. 5, one may write Eq. (3-15) as

_olo 'm'n 7 e ,

ot sl B LU SRR SV TR
-1 -1

Pl = if m# n (3-16)
3]
kn ¥ Y Y
oo 'm m m
Bkn 2 J [a (2 (u+l)) +a (2 (1-u))]du
a'a 4

if m =n
where Vg v kaACm, Yn = kaACn, and the function o is defined by

VA 3
ale) = f Hiz)(v)dv (3-17) L
0

This function may be computed using Struve functions [29-11.1.7]. The

integrals in (3-16) may be approximated readily by Gaussian quadrature
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formulae as outlined inthe Appendix. Equation (3-5) is given by an
identical result where subscript c replaces a.

Equations (3-6) and (3-7) are straightforward and one may easily

obtain
ko
= - — < ol
P, e L

k AC
04 = for m = n-1 or m = n

= (3-18)

0 for m otherwise

Equations (3-8) and (3-9) are similar to (3-15) as can be seen

" from the following symmetric product:

oy A hb
P3- kono <§m,2x£ (, gn)>
et
+1
k n k. Sl S
__o0o0 wal ) . : :
A j f T By Gylr (6) - (£)])detde
b m m-1
t t
m-1 n
tm+1 n+l oo
m+l (2) i : :
= [ =t B G |E (e) - £ (e")|)de ' dep(3-19)
t t m mt+1
m n

Using an appropriate change of variables in each integral and Ym = kbACm,

one may write

k.0 n0
P, = (s, + 8,) (3-20)

and 52 are given by

where S1




1

¢ o gt Y Y
m-1'n I (2) m-1 _.n
16 I J GrPBT(FTug - F et + xR ~1,qn]0du'du
-1 -1
if m-1 # n
Sl = (3-21)
: 1
Y ¥ ¥
m-1 u 1 _n R .
’ 3 f G+ Pla G @) +a (G (1-u)ldu
9 -1 : if m-1 = n
*
D
f ¥ ¥ Y Y
m 'n =u I (2) _m N '
A 16 f f G P Bl - 5w + kR [du'du

"
|
=
I
[

8, = ifm#n
£3-22)
¥, ; Y, i
. f G+ Pla (G (@) +aGR 1-u))]du
=]l =
ifm=n

For Eq. (3-10), the magnetic field due to a transverse directed

electric current is needed and using (2-2) with M = 0, one obtains

hb
x L(E, 0)>

(f=33

P, S aie <y
o —m

=
Kk m+1

o
-y I fm(t) : fn(t)dt

E

m-1

tm+1 n+l
+k—° £ (t) » Axf (') xV u(z)( |r-r'|)dc'dt  (3-23)
43 ~m L - "o kb X

tm—l tn—l

where r is a vector from the origin to a point on ACm_1 u ACm and r'

is a vector from the origin to a point on Acn—l U ACn. The above
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integral is broken up into four parts and the symmetric product is

written as

k
P, = ﬁ [S,(m-1,n-1,1,1 ) + S, (m-1,n,1,-1)
+ Sa(m,n-l,-l,l) + Sa(m,n,-l,-l)] (3-24)
The function SA is defined by
i 1
oY
1 1
._lgjn J J (p %’+ Eﬁ(q %’+ 50 ¢(m,n)du'du if m#n
-1 -1
Sa(m,n,p,q) = (3-25)
Y
__m l m i =
3 (2 + 6) if m=n
where
lAl‘n 5 gm n .. (2)
) = =22 g SNgR. 1 (3-26)
8,0l
and
Ym Yn
B = R T2 v -2 vy 45

A similar transformation of variables as was done for Eq. (3-19) has

been used as well as the identity

=k, (r-r')
7 82 aq rr' ) =—T—"—| 12 (e Je-r' ) (3-28)
'

Equations (3-11) and (3-12) are computed using the electric

field operator defined in Eq. (2-6), from which one obtains
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¥

) eb
Py = - K, <E 1@, )
E 4
:
E]
: ko m+1
2 o s
tm--l
'.‘
b ko m+1 2 n+1 2)
+E j _fm(t)°y_xj Exgn(t')XZHo (kblz—z'])dt'dt
1o t
m-1 n

(3-29)
where r is a vector from the origin to a point on ACm_l u ACm and r'
is a vector from the origin to a point on ACn. Using the same trans-
formation as for Eq. (3-19), one obtains
ko
P5 = E;—(Sl + Sz) (3-30)

where Sl and S2 are defined by

)
— —%ri if m=1 = n
=i (3-31)
1
Yoo oY
.1 mln a 1 5 ; i
43 4 f f (2 + 2) ¢(m-1,n)du'du if m-1 # n
-1 -1
y
= 7? if m = n
. S (3-32)
1 1

1l mn ~u 1 '
o e f [ 5+ 2) ¢(m,n)du'du if m# n




WSOV VRV S

§1n ; gn n (2) |
¢m,n) = ——==H"(|]R ] (3-33)
IR, o
where R is defined in Eq. (3-27).
—m,n

Finally, to obtain Eq. (3-13), one must compute the following

symmetric product:

ko eb
= - — < >
P, e £ b £ O
k kon ol . th+l 2y
=——%ﬁ—J f(t)-ﬁx@x(_+—71§-)f £ (e (kblrr'[)dtdt
- %
Cm-1 a]
(3-34)
where r is a vector from the origin to a point on ACm_l u ACm and r' is a
vector from the origin to a point on ACn_l u ACn. The technique of inte-

gration by parts is applied twice to the term containing the V V ¢« operation

and the result is given by:

k kN Sl Sntl y 9B {e) af qet ) (2)
Pﬁrf J[f(t).f(t)—_Zdt ar I dacta
g &y
ta-1 Fn-1
= (3-35)
This integral is broken up into four parts and after similar trans-
formations as used in (3-19), one obtains
k nb
By ™ kb” {s (m-1, n-1,1,1) + S¢(m=1, n, 1, -1)
+ S6(m, n-1, -1, 1) + S6(m, n, -1, -1)} (3-36)

where the function S6 is defined by
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s

.

-«

1 1
Y Y .
nn Pu  lyqu’ 1,8 o _
3 f f[(2+2)(2+2)5m£n -2
Sl m n
Y Y
. Héz)(ljg'u Em - ??-u'gn + k]R ’nl)du'du
if m# n
56(m9n9p’Q) = .
¥ Y
_m pu  1l,qu 1, pq _m
5 f{[(2+2)<2+2> Fla (3 (@)
23 ¥
Fo (R @] +a@ s bid -y
S22 G teub) ¢ e 3G -3,

5@ 1,u.2) "
B (G mw) - G+ DR (F(1+u) ] Mdu
ifm=n (3-37)

In the above formula for 56, the identity (3-17) was used as well as

[29, 11.3.20 and 11.3.24]
(3-38)

z
J lxﬂéz)(u)du =z H{z)(z) - %&
0

3.3. Formulas for TE Excitation Vector
The elements of the non-zero excitation vector are given by Eq. (3-14).

The incident magnetic field is z directed and is adjusted so that the inci-

dent electric field is equal to unity and has zero phase at the center of

aperture face Fl with respect to the coordinate system in Fig. 4. Plane
For plane

wave and line source excitations are considered separately.

wave excitation, the incident magnetic field is given by




w

1 a i
-jk_[x cos ¢~ - (y - =7)sin ¢ ]
Hmge y s

where the angle of incidence ¢i is measured from the negative x axis.

Substitution of this into Eq. (3-14) yields

‘54 ACm wa i kaACm i
;, Ii = k AC noko e_]ka(tm + o i ?r)sin [0) sin( 3 sin ¢7) ks
_ m a m nak k AC i

# ( a2 ® sin o)

4 : 1. :
If a magnetic line source of strength K~ volts is placed at the
€ <+ + ¢ o+ 8 @ ® - 1 . e ..0- . e P . - & @8 +« = o..--—- .o..
coordinates (xs, ys) in region a then the incident magnetic field at

the point (x,y) is given by

2
N R L A
z n (3-41)
2
”(k/ t62-595
where Ki has been adjusted to
K: = - 4] (3-42)
(2) &
a (k V/ ( 4 ) )
Substitution of Eq. (3-41) into (3-14) yields
AC AC ;
. kn kAC 1H(Z)(k/x2+(—-—‘ﬂu+t 3 =2 L o )y du
_ . _00 a m o aV s 2 m 2 s (3-43)
g % L) R et
m k n 2
a'a o (2)
(k, (—-y))
J
i
|
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Chapter 4

TRANSVERSE MAGNETIC (TM) CASE

4.1. Expansion of the Equivalent Currents

For the TM polarization, there is only a z component of electric
field and transverse components of magnetic field. The equivalent mag-
netic currents are transverse directed and must satisfy the boundary
condition that they are zero at the ends of Fl and FB. The equivalent
e}ec_t'?ic currents gre zeddreqted and satisfyeso- bowndary cendi®efons ®n
the contour C. In fact, it is expected that JP becomes unbounded at
the ends of FZ and F4 when region b is lossless since it is the actual
electric current induced on these surfaces in the original problem.

With this in mind, the functions of Eq. (2-10) are chosen for the g1 and

g3 of (2-13) and (2-14) while the functions of Eq. (2-11) are chosen for

B of (2-15). The unknown currents are thus expanded as

N,-1

s ) 1 "
B = nZZ Vi Sy e (4-1)

N,

3 3
M = Vo (t) (4-2)
= n=§ 2 R

3

gite

ian R (4-3)

The formulas for the matrix elements of Eqs. (2-16) and (2-17) are
obtainable from Eqs. (2-18)-(2-28). They are given as follows where

the ranges of the indices m and n are now specified:
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a ha zimiNZ-l
Y =-kno<f,L ©, £)> (4-4)
5 7 2 <n<N~1
)
N, +1<m<N,-1
¥ £ = len <, %@, £ p o . (4-5)
} mn (o 2] ==y N +1<1’1<N-1
3 3 =n2A
g
4 k 2 <m< N -1
¢ Uln=_70<f,§x_gn> 2 (4-6)
‘ m —m l<n<N_l.
-"=%
, k Nyo+1l <m < N,-1
} vl =_T°<f,§x5_n> g o (4-7) 1
" s l<n<.N-1 e @ e ‘@™ o L - et ‘}
1 <m<N_-1
Yoo = - kon <g, 8x1"(0, £ )> st (4-8)
iy B g N1
1 <m<«<N_-1
<, axL"™(, £ )> = (4-9) |
5 e . N,+1<nc<N,-1 !
gt ERER |
1 <@m < N.=1
™= -k <g, AxL , 0)> 3 (4-10)
= 1&mx Rt
1 <m<«<N_-1
ek g, L0, £)> . (4-11)
mn (o] e
2_n_N2-l
1 <m<«<N_-1
e3 eb i
Yoo = -k <g, L0, £)> (4-12)
mn o g‘m =% N. +1 <8 <R <]
3 ="2%
e Xg eb L SR IR
T ====<g ,L (g, 0)> (4-13)
mn Ny B L l_niNS—l
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The non-zero elements of the excitation vector are given by

> 2<m< N1 (4-14)

4.2. Formulas for TM Matrix Elements

Equations (4-4) - (4-13) define the elements of the matrices
in Eqs. (2-16) and (2-17). Explicit formulas will be derived here
for these symmetric products using the definitions of the operators
given by Eqs. (2-2) and (2-6) and the expansion functions (2-10) and
(2-11).

For Eqs. (4-4) and (4-5) it is necessary to know the magnetic
field due to a transverse directed magnetic current. This is obtained
by duality from the electric field due to a transverse electric current

which was used in Eq. (3-13) for the TE case. Thus one may write

ha
s - < >
Q kono £y L, o, £)
kOno
= kana {SG(m-l, n-1, 1, 1) + 86(m-l, n, 1, -1)

+ s6<m, n-1, -1, 1) + S (m, n, -1, -1)} (4-15)

where the function S6 is defined in Eq. (3-37) and ka replaces kb'

Equations (4-6) and (4-7) are straightforward and one may

easily write
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P

i kS Nt ke it

koAC
= Z for m~-l =norm=n
= (4-16)
0 for m otherwise

Equations (4-8) and (4-9) require rhe magnetic field due to a
transverse directed magnetic current. Thus the inner product is

written as

- & o
Qg = = N, gy B XLV, £

€
m+l n+l
A 1] 2 \J \J
= —_&-Trj gm-EXf En(t )HC() )(kb|£-£ ')dt dt
t t

m n-1
k_n_ CnH Corel e
s« & . L} o | Al o
+ z‘kbnb F £ axvy J gn(t )1«10 (ka£5 |)dt'dt (4-17)
tm tn-l

where r is a vector from the origin to a point on ACm and r' is a vector

from the origin to a point on ACn_1 U ACn. After some manipulation, one
may write the above in the form
Q, = ‘ol s © (4-18)
3 kbnb i=1 &

where each Si is defined by
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1
Yn'n-1 & LA u' 1...(2) L
e f J (Em'En—l)(—2—+E)Ho (lkbgm’n_1+7u£m
-1 -1
: 'Y_
- nzl 'E_ll)du'du
S =
f! 1 - 1 7 : if m # n-1
! S f{(§+§)[a(7“‘ (utl)) + al5 (1-u)))
g =}
g AN ) JAL. PO ST CO PAC R PR S
; 3 T3y Gy M s TP G i
if m = n-1
Yon'n Ko u (2) Yo A
~ 18 J J(-Em.-gn)(—Z LT
-1 -1 "
- 7? u' gnl)du'du
52 = ” 1 if m# n
'—82 J {(- + )[a(— (l+u))+0t(— (1-u))]
-1
e de 5D Gy - d - HEO A oy a
S e ST Wi S R 3 =
if m=n
1
b ¢ N
1 (2) el SR =l s '
8 j (BB oy ¥ 8T ® o Dau
-1
if m # n-1 or n-2
Sy =
4;'_1 aly,_;) if m = n~-1 or n-2
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(4-20)

(4-21)

e B =




o et S e E— e
S AL SISO AR S

“

-1 (2) - ZE S "a-1 6 '
8 f L L R o e a B RN |

f; if m # n or n-1
B s, = (4-22)

- ey ) if m = n or n-1
4Yn-l n-1
2
: ¥ Y.
<3 (2) S SR T '
8 J ML T o W i L
-1
if m # n or n-1
S5 = (4-23)
- —l—'a(Y ) if m = n or n-1 |
4y n i3
n ‘,
|
il Y Y |
1 (2) _Bs e '
8 f Ho (| bgm,n 2 Em g " = |)du
=1 |
if m # n or ntl !
% " (4-24) ;
6 {4
- a(y:) if m = n or ntl f
4Yn n }

In the above, Vo ™ kbACm.

For Eq. (4-10), the magnetic fieid due to a z directed electric

current is necessary and one obtains




A hb
Q(‘ = - ko <3m, o x L (-g-n’ 0)>
mt+1 1
= - ko f E-gm . En dt

t
4 m

k k fmtl fne (e-z')
i Okb o A —_—— (2) , .

4] f &y f S Te=r'T Hy (kbll-s [Ydt'de (4=25)

: | %) e

where r and r' are vectors from the origin to points on ACm and ACn

YV

respectively. The above is written in the form

k
= =2 Ap if m=n
2 m
Q4 = (4-26)
1 1A R
ko 1 men En m,n _(2) A ,
S T B R vaetsa
kb 43 4 Jﬁ ’ 1 —m,n
-1 -1 R ifm#n

where Ym = kbACm and Em " is defined by Eq. (3-27).

For Eqs. (4-11) and (4-12) it is necessary to know the electric

field due to a transverse magnetic current. Thus

% == Ky B L0 £

ko t 1 . n+l 5 ' ) : :
=3 Z} fm+ gm(t) « fi x f A x fn(t ) x ¥V Ho (kaETE [)dt'de
e (4-27)
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where r is a vector from the origin to a point on ACm and r' is a vector

from the origin to a point on ACn_1 U ACn. This equation is very similar

to Eq. (3-29) and after some manipulation, one obtains

9, == (5, + 4,) (4-28)

& [o™

where S, and S, are defined by

i} 2
Y
7?’ if m = n-1
. B (4-29)
i 1
Y. Y .
SN o ] u' 1 'y W R 5
43 A I J G+ 2) ¢(m,n-1)du'du if m # n-1
-1 -1
Y
7? if m =n
b i (4-30)
Yol s
D ans b | \
4i &4 I f ( 2 + 2) ¢(m,n)du'du if m# n
-1 A

and ¢(m,n) is defined in Eq. (3-26). 1In the above, Ym = kbACm.

Lastly, for Eq. (4-13), it is necessary to have the electric field
due to a z directed electric current. This is found simply from the mag-
netic field due to a z directed magnetic current used in Eq. (3-15). Hence

one easily obtains

k
SRV eb
Q6 no <_gm’ l"‘t (En’ 2)>
a J? B (4-31)
o
where Pl is defined by Eq. (3-16).
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4.3. Formulas for TM Excitation Vector

The elements of the non-zero excitation vector are given by
Eq. (4-14). The incident electric field is z directed and is adjusted
so that it is equal to unity and has zero phase at the center of aper-
ture face Fl with respect to the coordinate system in Fig. 4. Plane
wave and line source excitations are considered separately.

For plane wave excitation, the incident magnetic field has a

component tangential to Fl given by

{ w ;
: z i a i
; i ~jk [¥ cos ¢ - (y - =) sin ¢}
i 0s
B S0 o A é (4-32)
¥ n
a
where the angle of incidence ¢1 is measured from the negative x axis.
Substituting this into Eq. (4-18), one obtains
w :
; : L oAy i -jk_AC sin ¢
Ii S kono cos;@1 Jka(tm 2)51n ¢ e S ReL -1
m |35 o ST i . x i
a'a j sin ¢ JkaACm_lsln [0)
¢ y 2
jk AC sin ¢
& "= - 1
+ i ] (4-33)
JkaACm51n o)
If an electric line source of strength amps is placed at the
|
coordinates (xs, ys) in region a, then the tangential component of mag- %
netic field at ) is given by '
2 2 2
4 g Hi)(ka\/xs+(y-ys)) !
H = (4-34) i

y
) 2 R B <, / 2 Ll e Al
Jna\/;s +t-y) B TRy x +G=7))

where Ii has been adjusted to




-

TR A ke

i =4

E = (4-35)

(2) F e e
kanaHo (ka xs ® (TT) )

Substituting Eq. (4-34) into (4-14), one obtains

AC :
1L @, 1,02 \//2 _m-1 iy Yo
CJebe G+ PHT /% + ( I . e 5
? -1 \// 2 ACm—l 2
T g S ey ~a
AC
" k AC_ 7+ PH (k) x + ¢ g e} £ = 5 37) p
3 v
-1 2, & (1) + £ -y )2
*s 2 m Vs
(4-36)




Chapter 5

MEASURED QUANTITIES

Once the magnetic currents on the aperture faces are determined,
several transmission characteristics of the slit may then be computed.
In each following section, the TE case is treated first, followed by

the TM case.

5.1. Measurement Vector

For the TE case the magnetic current sheet at ', is z directed,

3
hence, to measure the magnetic field EF at a point in region c¢ as shown

- ’ i 2
in Fig. 7, a magnetic line source K g_is placed at the measurement point.

e — ——— -

From reciprocity one obtains

B “*KE= J gt dy (5-1)
where g? is the magnetic field due to Kgg radiating in the presence of
a complete conductor and EF is the magnetic field of currents ﬂ? radi-
ating in the presence of a complete conductor. After using Eq. (3-2)

for §3, Eq. (5-1) becomes

N,-1
c, & _ 3 —
HK—JZ v_ g (t) « Hidt
Py T
3 w
ng Na-l c
Sk 3 |2 (2) o ¥
atgh el | g, (WH " (k_[yg-r Ddy (5-2)
c n--N3 A
2

Here the coordinate origin is now in the center of F3 and the above

equation may be written in matrix form as
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Fig. 8. Measurement of ﬂc at Em’ TM case.
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ik,

z nc 21Trm

[y
o 8

m %e 33

(5-3)

»>e
where the tilde (~) denotes transpose and I is a TE measurement vector

whose elements are defined as

w
mker” dle E =
& o cm cm 2 (2) o 3
B 25 e J g, (B~ (k [v§ - r [)dy (5-4)
w
SLNE
2

for n = N3, N3+1,..., Na—l. If L= >> XC so that far-field measurements

are of interest, the large argument approximation to the Hankel function

is used in Eq. (5-4) to obtain

of wc/2 jkcy sin ¢
Ll = J gn(y)e dy
-w /2
(&
: AC k AC
i jk (h_ + —Eﬂ)sin¢> sin ( °2 D sin ¢)
= - AC e e x (5-5}
n kCACn
( 5 sin ¢)
w n
where h = == - )} AC, for n = N,, N.+1,...,N,-1. This can be con-
n 2 i=N i 3 3 4
3

veniently written in terms of the excitation vector of Eq. (3-40).

For the T™M case, the magnetic current sheet at FB is y directed,
hence the electric field EF in region ¢ is measured by placing an

N
electric line source I'Z at the measurement point as shown in Fig. 8.

Again from reciprocity, one obtains




Equation (4-2) is substituted for g? and the above is rewritten as

4
" 3 A
E1 J L VE () - Hat

where use has been made of the fact that fn(t) on I, is 72 directed.

3

Using the y component of_gz in the above, one obtains

w
-1 e (2) T
Sl H" (e |y§ - x_|Ddy
n n y
w

=N_+
n N3 1

% N4

2 o
o xm+(y-ym)
2

where r = x X + ymﬁ. An expression for E may now be written in
~m m— z

matrix form as

z 2Tr

3

where ;m is the TM measurement vector whose elements are given by

w
: c (2) o
& X wkcrm chrm 3 Hl (kclxz r l)dy
e e e e £ (y)
n j 23 n 3 3
+ -
_wc \/xm ¥ = V)
2
for n = N+1, N +2,..., N, -1. If r >> )\ for far field measurements,
3 3 4 m c

Eq. (5-10) becomes
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w
c
~ jk y sin¢
mf _ 2 (d
I e cos¢J fn(y) e dy
w
gl
i 2
- ACn
4 ch(hn - —Zr)sin ¢
E a ZACn e kcACn
g = cos ¢ 5 sin ( 5 sin ¢)
4 J(kCACn sin ¢)
A
. ac g
4 ik (h_ + g Ysin ¢
paE. e 5 F k AC .
- cos ¢ R 5 sin (= 2“ sin ¢)
J(kCACn_l sin ¢)
v, n
where b, = o= - I bc, ; for n=Nj4+1, Na#2,...,N,-1. 1If each
i=N,+1
3
ACn = AC on F3, then (5-11) becomes
kCAC 9
Imf e a echh“ sin¢ [sin ( 7 sin d)
n kcAC sin ¢
)

e

5.2. Transmission Coefficient

The transmission coefficient of the slit is defined by the

ratio
§ roa
P

iN

(5-11)

(5-12)

(5-13)

where Pt3 is the time average power transmitted through the aperture face

F3 and PiN is the time average power intercepted by the aperture face Tl

when the source is normally incident.

mitted through aperture face Fl is denoted by Ptl
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, then when the slit

If the time average power trans-




is filled with a lossless medium, P

must equai P This may be used

tl t3°

as a check on the numerical solution when the imaginary parts of the com-

plex power through Fl and T, are not significantly different.

3

Consider the TE case first. A magnetic line source is placed
w
at (xs, 7;) in region a to produce an incident field. The slit inter-

cepts a fraction of the incident power. This fraction is given by

k Bk
6 a 142 a i 2
P S F e I (5-14)
a a
w

where 6 = 2 tan-l (EiL) and Ki is the strength of the magnetic line
s

source. A normally incident plane wave in region a produces an

i
intercepted time average power given by (|E | = 1 volt/meter)

iN

To compute the time average power into region c, the real part of the

Poynting vector flux at I', is integrated along F3. This gives the

3

formula

i3 2 33..c.% >3
Pt3————an[Y] A
oo

This is the usual equation for power flow into a network represented by
an admittance matrix[ZYC] except for the factor of 1/kon°. This factor
appears because of the factor - kono in Eq. (2-19). Another method for

finding Pt is to integrate the Poynting vector flux over the far field

3
in region c. This gives
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(5-16)
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s call e i . ‘ - - . - -

¥ |

/2 ?

c ek o |

Pt3 Re J E" xH r rdd ;

-m/2 |

K m/2 ;

e Jef 23,2 ;. |

3 b - J |55 V7| do (5-17) |

3 £ -y i

X |

=a w

kg For the TM case, an electric line source is placed at (xs, 7;)

in region a. The fraction of the time average power intercepted by the

slit is given by

kn Bk n -
N 1 e A O %
P = Gl [T = 0] (5-18)

where Ii is the strength of the electric line source and 6 is the same

as before. A normally incident plane wave gives

g

w

a
P, =— |E
iN na

- 57 o
. (5-19)

3
P

The time average power Pt for the TM case is given by Eqs. (5-16) and !

3
(5-17) but with TM quantities used.

5.3. Power Gain and Normalized Field Pattern

The power gain function is defined as the ratio of the radiation
intensity in a given direction to the radiation intensity which would
exist if the transmitted power were to radiate uniformly over half space.

This gives, for the TE case

cp2

T n |H| k ~

= mc' 2z = [~ >ef 23,2

G = 1w 5 ~n? I v
m t [+

(5-20) |

and for the TM case, |
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() = lim —>
Fr o E,

k ~
cl2 ol Cc lfmf V3|2

|E/|° =
2ncPt

z
If the medium in region ¢ is lossy, the term "“radiation intensity"
does not apply. Here it is desirable to define a directive gain as
the ratio of the time average power density produced at a certain
range in a certain direction to the uniformly radiated time average
power density at that range.

The normalized field pattern is another quantity of interest

and is computed in the far field by

C ~
s 1, @] ~l;ef;,sL
(o >ef >
!Hzlmax |I ¥ |max
for the TE case, and by
{ o ~
P [E, @] jmf 33
B ™ P
Z max max

for the T™M case. The denominator denotes the maximum value of field

magnitude measured in region c.

5.4. Slit Impedance and Polarizability

Since the fields in region c arise from a magnetic current y?

(5-21)

(5-22)

(5-23)

radiating in the presence of a complete conductor at x = d, the magnetic

vector potential for these fields may be written as

48




JE
2

. ‘2L w Hc(,z)(kclz - y'§hay’ (5-24)

w
-
2

where the coordinates of Figures 7 and 8 are used and r replaces Em as
the field point. The following assumptions are made:
a) w =w =w.
' _._
b) k % <<1 fory'e| > 2]
c) The field point r is such that [r| >> y'.

d) The incident field is constant on Fl.

The Hankel function in Eq. (5-24) is now approximated by [24, Appendix D]

-jk r
H§2)(kc|£ - y'2|) > /;ii; a1+ %,X_ sin ¢)(1 + jky'sin ¢)e € (5-25)

Neglecting terms of order y'2 and higher, one can write the magnetic

vector potential as

-jkcr W
o F e
2mjk r
LS.
2
-jk r -
jk e € sing 7 3 1
+ —= I M(y")y'(d + 27k r)dy' (5-26)
Zﬂjk c

-
2

The first term in the above equation is dominant, and hence will be con-

sidered in the following discussion for each polarization.
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For the TE case, the magnetic field in region c is given by

W
jk jk -jk r
R - g e c - S Sl
B === F : == f— M (y')dy
c ¢
-
2

A slit impedance Z is defined by the equation

W

2 3 '_ ise ..
M (y')dy z(d w)

N|£-—j

where Hiic is the short circuit incident magnetic field evaluated at

the center of Pl. This is obtained by letting the sources in region
a radiate in the presence of a complete conducting plane at x = O.

The magnetic field Hg is now written in the form

c YARS ch —chr isc
HE = === J——'& H
Z nc 2Tr z1

which may be compared to the measurement vector formula given in
Eq. (5-3).

For the TM case, the electric field in region c¢ is given by

"

/jk -jk r
c=-Ao - _C c 2 3 A '
Ez 2 Y_x£= cos ¢ e © I My(y )dy

N g

If P is the magnetic charge density associated with the transverse

directed magnetic current then
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(5-28)

(5-29)

(5-30)
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'ﬁ~u -

L w
fz My = - fz y' (@ - w)dy
o — W
2 2
W
= ju |2 y'p ay’
m
-
2
= juu, pmy (5-31)
where the continuity equation
Ve M = - jup (5-32)
= = m
has been used and a magnetic dipole moment P is defined by
A
1 283
B ™ T J M7 (y")dy' (5-33)
c
W
2
A slit polarizability am is now defined in terms of the y component of
Eq. (5-33) by the equation
= isc L
pmy = am(wl-ly1 ) (5-34)
where again H;ic is the tangential component of the short circuit inci-
dent magnetic field evaluated at the center of Fl. The electric field
is expressed in terms of this polarizability as
k wn_ cos ¢ jk -jk r .
N e (> c isc d
Ez s Y amHyl (5-35)

which also may be compared to the measurement vector formula given by
Eq. (5-9). 1In the preceeding discussion, Z has the dimension of ohms

and o has the dimension of length.

Il

S — - T S 35 .




-

CVTER A vt

jE

Chapter 6

MODAL SOLUTION

6.1. Problem Formulation

The discussion thus far has been concerned with slits of arbi-
trary cross section. If the slit has a rectangular cross section, the
equivalence principle may be used to break the problem up into three
isolated regions [16]. The fields in region b then have a modal repre-
sentation, which is not necessarily the case when the slit cross section
is an arbitrary shape.

In this chapter, a special case of slit cross section is con-
sidered which allows region b to be considered as a sequence of two-
dimensional rectangular cavities each coupled to another by an aperture.
One such possible configuration is shown in Fig. 9. Each cavity may
be filled with different material. In general, region b will consist of
Q such rectangular sub-regions. The qth rectangular sub-region is
specified by dimensions as shown in Fig. 10. The equivalence principle
is applied as in [16], so that each aperture face Fq’ for @ = 1,256
Q + 1, is replaced by a perfect electric conductor with a magnetic current
sheet residing on each side. These magnetic current sheets are chosen
to assure continuity of the tangential component of electric field at
each Fq in the original problem.

The original problem has now been broken up into Q + 2 isolated

regions, each with postulated equivalent sources. The total field in
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Fig. 9. The slit cross section, region b, as a sequence of two-
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dimensional rectangular cavities. Q = 4
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Fig. 10. The qth rectangular cavity of region b.
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region a is (g} + Eé, 5} + Eé), where (El, g}) is due to sources (g}, M)
radiating in front of a complete conductor at x = 0 and (g?, gé) is due
to magnetic current sheet gl at Fl radiating in front of a complete con-
ductor at x = 0. The magnetic current sheet El is given by
M =R x B2 at T (6-1)
=R L
s 2 s < - bq bq
The total field in each sub-region bq of region b is (E ', H ') due to
magnetic currents - yq at Pq and Eq+l at Fq+l radiating inside a closed,

two-dimensional, conducting box filled with material of permeability ubq

and permittivity € These magnetic currents are given by

bq’
M =& x 5’4 b F (6-2)
T e e q
- bq =
TS SRS -

The total field in region c is (EF, EF) due to the equivalent magnetic

current sheet -M: 1 at FQ+1 radiating in front of a complete conductor

at x = d. This magnetic current sheet is given by

- By Bl -
= RXE atl"Q+1 (6-4)

M
—Q+1
The preceding equivalent magnetic current sheets must also be
determined so as to assure continuity of the tangential component of

magnetic field at each aperture face in the original problem. Thus the

following equations are written: ’
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120, M)+Blhl(M)-lh2(M)—-__il at T,
s tay) + B? (M)+B (M)-2h3(M) at T,
(6-5)
E ol TRE L e RS e TR s WL e A
'ﬁggﬁ@q) + B —-23+(§+1(MQ+1) + 2th+1(° By = 0 2o Ty

The operators L:a and L:C are defined by Eq. (2-2) and Ei is the
tangential component of the magnetic field due to sources (g?, g})
radiating in the half space filled with (ua, ea) in the presence of a
complete conductor at x = 0. The factors of 2 in Eqs. (6-5) come from
the images of the magnetic current sources. The operator g:g’n gives
the tangential component of magnetic field at Fq due to a magnetic cur-
rent sheet at Fn radiating inside the two-dimensional cavity bm. The
superscript h denotes magnetic field operator.

Using the method of moments procedure, ®ne can reduce Egs.(6~5) to a
system of matrix equations. Each aperture face Tq is divided into N
segments of constant length Aq. It is assumed that the equivalent magnetic

current sheets may be expanded as a linear combination of basis functions

defined on each domain Tq. This is written as
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Nq
)

M Vv t e =
q il q,n —q,

for q = 1,2,..., @¢+1l. The coefficients Vq o 2re complex scalars to

b

(y) on T

be determined and the functions Eq a will be specified for each polari-

zation. The testing functions are chosen to be the same as those used

for expansion and a suitable symmetric product is defined by

<A , B> = [ A < B dy
e | 4 49

Q

u T

q=1 ¢

where A and B are vector functions defined on T .
- —-q q

Equation (6-6) is substituted into Eqs. (6-5) for the unknown

magnetic currents. The symmetric product of the qth equation of (6-5) is

then taken with e for m= 1,2, .5 N and q = 1,2,
—q,m q

result is a system of linear equations which is written in matrix form as

& . bl b1
gt L v
0
bl bl . b2 b2
Y1 Y tin Y12
bQ-1  bQ=1 . bQ
0 I Yar iy
bQ
L Y21

>
where Vq are column vectors containing the coefficients V

bQ
Y22

oy OFEL.

L
v
2
b | |2
v
Y12 Q
cl | v
+Y,J | Q+j
17Vq, 20

The

(6-6)

(6-7)

g (6-8)
3

0
iy



The matrix in Eq. (6-8) is block tridiagonal. Each submatrix has

elements given by the formulas:

a

T Sy G (6-9)
(Y?§)mn T kono <Eq,m 322 q( n) P18
(Y ) = kono <sq m’ §22 q-'-l(—ew:#l,n)> (6-11)
(Ygg)mn 5 kono —q+1 m’ —zzig( ) it
(Ygg)mn S kono —q+1 m’ —:2;§+1(—q+l,n)> (-1
LSl ST —2&1‘0 Sge1,n)” K

where the factor —kono has been multiplied through Eqs. (6-5). The

non-zero elements of the excitation column are given by

i
e kono =1y m’zﬂtl (6-15)

The ranges of the indices m and n are determined after the specification
of the expansion functions.

The original problem may be viewed as Q+2 cascaded networks. Each
network represents an isolated region and has a characteristic admittance
matrix which depends only upon the properties of the region which the
network represents. Due to the choice of expansion functions made in the
next two sections, it will be seen that the sub-matrices of the composite

matrix in Eq. (6-8) have the following properties:

[Pre oy ey




1) [Ya] and [Yc] are symmetric Toeplitz matrices, hence
only one column of each need be computed.
2) Y?? and Ygg are symmetric matrices.
bq = (vPd
B Oyl ™ Gl
The matrix of coefficients in Eq. (6-8) is block-tridiagonal and

symmetric, hence special computational and storage procedures are

used.

6.2. TE Case

For this polarization, the equivalent magnetic current sheets
are z directed. Thus expansion functions for the aperture faces T

and Fq+l are chosen as

12 (n-1) A <y - < nA
o g=" " g -4
gq’n(y) = (6-16.1)
0 y elsewhere
for nn = 1;2...., Nq and
12 (-1) 8 <y - Fog 5 Blg
Bl n) ™ (6-16.2)
0 y elsewhere
forn = 1,2,..., N ,_. Also, in the above, Aq = wq/Nq for q = 1,2,...,Q+1.

qtl

Equations (6-16) are written with respect to the coordinate system shown

in Fig. 10. Figure 11 shows the order in which the functions Eq = appear

’

on aperture face Fq.
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- The elements of [Ya] are determined from a specialization of
Eq. (3-15) to Fl. Hence, one may easily obtain the formula
1 1
k n 2 =
‘ ae X, (2) (o _u' X '
& 2k n 4 J J Hy (Y'Z 7+ (m n) |)du'du
' - -1 -1
: ifm#n
L § Y;n & (6-17)
’ kng Y A y ¥
Kk n 2 J [0 W)+ al; (1-v))]du
aa” 3

ifm=n

where Y = kaAl and the function o is defined by Eq. (3-17). The

matrix [Yc] is determined from (6-17) where Yy = kcAQ+"’

kc replaces
ka’ and nc replaces na.
To compute Eqs. (6-10) - (6-13), TE fields must be constructed

inside a two-dimensional perfectly conducting cavity. To do this, an

electric vector potential Fb w 9% is chosen for each region bq.

The fields in each region are obtained by

bq
e -yxpa- :.—%;— 23S (6-18)

qP? - - ﬁg FPd

L Z (6-19)
= wh e =i e : bq
where kbq ub - and an ubq qu' Each scalar function ¥
satisfies the equation
2 bq
By 3 w ey (6-20)

9x By




£
&

everywhere in region bq except where the sources are. Considering the

magnetic current sources e at I' and e
—q,n q —q+l,n

may solve Eq. (6-20) with the appropriate boundary conditions on the

at Pq+l separately, one

cavity walls. The resulting magnetic field operators are then de-

fined by
: q
© £ k -
th,q(e y =3 EEBS_ ; p €08 k. (x ) cos BT
—z —q,n =h n = q q h
q bg p=0 kxp sin kxpdq q
h
q —
. J eq n(y') cos Eﬁz— dy' (6-21)
0 ’ q
and
q
j © ¢ cos k' x
E;111,q+1(gq+1 D= gh_k.zﬂ_ ) _%___152_ P~ Ph_".‘/_
’ - 2
q bq p=0 kxp sin kxpdq q
hq
% ' Py’ o o
J eq+1’n(y ) cos hq dy (6-22)
0

where the subscript t has been replaced by z. The second subscript on B
will be either q(x = 0) or q+l(x = dq). In the above, Ep = 1 for

p=0, ep = 2 for p # 0, and

Qi ye L wZ - Ph2 &
(kxp) = kbq (hq) (6-23)

Thus, for Eqs. (6-10) and (6-13), one may obtain




g -

g4 2
© g cot k3 d %in 2h
bq o Aq Xp q
Mt = =7 oy ) > | Teme
" R R 2h
kbq q
° LT-T- + - LTT —
cos hq [yzq (m .S)Aq] cos hq [yﬂ,q + (n .S)Aq]
(6-24)
for1_<_m§Nq, liniNq, and
: s PYR sl 2
j t h
P AL I . | E €, cot k5 d 2R
22'mn an o q+l hq gl =% pmA +1
1 (_P_—kb ) -—q——Zh
qq q

» ] i
5 .5)Aq+1] cos hq [yrq + (n .5)Aq+1]
(6-25)
for 1 <m < Nq+1’ 1<nc< Nq+l' The formula for Eq. (6~11) is given by
P11
in A » e csckid T
(qu) o2 (k & ..) 9 z P Xp q q
12°mn an oqtl” h & pTA

Sl




sy 1LSsn<H The formula for Eq. (6-12) is easily

forlf_miNq 2%
seen to be
bqy  _ P4 -
(Y21)mn (YIZ)nm (§-20)
forlf_miNq+1,l_§n§Nq.

The non-zero elements of the excitation column vector are obtained

as in Section 3.3. Thus for an incident plane wave, Eq. (3-40) becomes

1 i
i Zkono jka[(m - .S)A1 --3—] sin ¢
T = (k A) e
m kn al
a a
k A
sin (3‘2l sin $°)
(6-28)
kaAl i
5 sin ¢
The formula for line source incidence may be obtained by a specializa-
tion of Eq. (3-43).
6.3. TM Case
For this polarization, the equivalent magnetic current sheets
are y directed. Thus expansion functions for the aperture faces Pq
and Fq+1 are chosen as }
y-yl
0—7r——3-+ 1-n)f @A <y~ Yy, < nA
q q— qQ— q
(y) Z&Q—:;Z + 1 + n) nA < < (n+1)A (6-29.1)
= n - ¢ (e 29,
40" (Aq 2 q=7 "¢ = q
0 y elsewhere ﬂ

o n = 1,2,.:0, Nq~1 and




¥ =y
SEERED -2 (GETR IREET — < -
s : Bgr1 Falf @DA g S¥-Reindy,
3
yrg_y A
g Eq+1,n(y) = ¢ Aq+1 + 14n)y nAq+1 Ly- yrq _<__(n+l)Aq+1 (6-29.2)
0 y elsewhere

1,2,..., N -1,

E Equations (6-29) are written with respect to the coordinate system shown

for n'= 1,2, ..., Nq+1-1' In the above, Aq = wh/Nq for q

[ in Fig. 10. Figure 12 shows the order in which the functions Eq o appear

’

on aperture face Fq'

The elements of [Ya] are determined from a specialization of

i Eq. (4-15) to Fl. This is written as

kn
a o
Ymn = Eiﬁ; {s(m-1, n-1, 1, 1) + S(m-1, n, 1, -1)

+ S(m, n-1, -1, 1) + S(m, n, -1, -1)} (6-30)

for 1 <m<N.,, 1 <n <N, and S is defined by

| 1’

? 2 3ok

; 1 ol '

| E 18 D&+ h B ® g - s em pavra
B Lt

1

ifm#n

1
s@,n,p,9) = { 7 J TR+ D@+ - Myad ) (6-31)
ol
-1
rad -] +aB+ Y (G- D

a0 @) - G+ PP ¢ anau l

if m=n
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where Y = kaAl and the function o is defined by Eq. (3-17). The

matrix [Yc] is determined from Eq. (6-30) where y = kcAQ+1’ kc
replaces ka, and nc replaces na.
To compute Eqs. (6-10) - (6-13), TM fields must be constructed

inside a two-dimensional perfectly conducting cavity. To do this, an

1. wbqﬁ is chosen for each region bq.

electric vector potential AP

The fields in each region are obtained by

L bq
E T kaqan é

g4

bq bq
-y x AP M9 B

. b . . :
Each scalar function VY 9 satisfies Eq. (6-20) everywhere in region bq
except where the sources are. Considering the magnetic current sources
Eq,n at Fq and Eq+1,n at Pq+1 separately, one may solve Eq. (6-20) with

the appropriate boundary conditions on the cavity walls. The resulting

y components of the magnetic field operators are defined by

. o k3 cos k9 (x - d)
th,q(e y=§ 2] Xp Xp q
RS T KqMbaq  pel sin k3 d
qQbqq p n xp q
hq
. BTY. "yein BT 4ot
sin h J eq,n(y )sin h dy
and q 0 q
q q
ah, i 23 o kxp cos kxpx "
B o) * 25 5 & 3 N
’ kbq bq q p=1 sin k' d q
XpP q
h
q ' ETTZ' '
. f eq+1’n(y ) sin h dy
0 q
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(6-32)

(6-33)

(6-34)

(6-35)




where the subscript t has been replaced by y. The second subscript will

be either q(x=0) or q+l(x=dq). Equation (6-23) also holds for k

for Eqs. (6-10) and (6-13), one may obtain

Zjn o
R o B T a8 g
11’mn an o qh kb Xp q

q p=T q q

+ mA )

for 1 <m < Nq-l, 1<n E_Nq-l, and

n
~
=
>
N

2jn A i
(le’czl) ok o 5y _gﬂ y 1l - (.11.rh_)2 cot k:pd
bq 9 p~ % q A

e PPt o 4
2h - -
| sin BT (y_ + mA_ )sinET (y
pTA h rq q+ h rq
qtl q q
2h
q

for 1 <m < Nq+l-1’ 1<n g_Nq+1-1. The formula for Eq. (6-11) is

given by
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(6-36)

q+l

(6-37)




L
i
5
1
4
‘ 1
|

7
2jn b
bq 0 q pT__ 2 q
Y,)) =—— (kA ) 1 /1 -¢ ) csc k' d
12°mn an o qtl hq p=l’ kbqhq Xp q
sin e * sin o e z
3 2h 2h
. sin (y, +md)
s pTA P hq Lq q
2h 2h
) q q
;_ . E.Tl =
A sin hq (yrq + nAq+l) (6-38)

for 1 <m f.Nq—l, 1<n S.Nq+Idu The formula for Eq. (6-12) is easily
seen to be

bq _ (vPa .
21;mn\, (Y12)nm (6-39)

<@ < - <n <N -
for 1 <m —-Nq+1 1, L <= __Nq 1.

The non-zero elements of the excitation column vector are ob-

tained as in Section 4.3. Thus for an incident plane wave, Eq. (4-33)

becomes
2k n koGl = =iy st g
Ii ==—29 (k A )cos ¢i eJ S -
m kana al

k A 2
sth (2L sia oD

2
<A (6-40)

Z £ sin ¢i

A formula for line source incidence may be obtained by a specializa-

tion of Eq. (4-36).
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Chapter 7
APPROXIMATE SOLUTION TO SLIT OF RECTANGULAR

CROSS SECTION

7.1. Problem Specialization

In this chapter, a slit of rectangular cross section is con-

"g sidered as shown in Fig. 13. This is a special case of the more general
E S problem considered in Chapter 6 and Eqs. (6-8) become
C a b b =10 3t
d Y + Y11 le \Y%
= (7-1)
Yb b c| |22 A
21 Yoq £ Y [V 0

since region b is represented by one rectangular region. This region

: b
has the composite admittance matrix representation [Y ] denoted by

b b
Y1 Y12
[¥°] = (7-2)
b b
Y71 Y92
where
b _ 1h,1 5
Fi1dem = = BT Bgme Byy (840 (7-3)
b o 1h,1 s
(Y21)mn - kono <22m’ §1:2 (Ein)> (7-4)
b 4 b i
b g b ’
(Y22)mn 3 (Yll)mn \=a)
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Equations (7-3) and (7-4) come from the specialization of Eqs. (6-10) and
(6-12) and the last two come from the fact that each aperture face is
divided into N subsections each of length A = W/N. The elements of [Ya],
[¥°], and T* in Eq. (7-1) are obtained from Eqs. (6-9), (6-14), and (6-15)
respectively.

It is desired, in this chapter, to obtain a suitable approximation
to the magnetic field inside region b so that simplified formulas for
Eqs. (7-3) - (7-6) may be obtained. For each polarization, certain assump-
tions are considered so that the fields in region b are approximated by
plane waves travelling in the fg and fg direction. This corresponds to
neglecting a transverse component of field in each case and the approxi-
mation is expected to work best when:

1) The incident field is a normally incident plane wave.

2) Region b is filled with a dense material, i.e., the

intrinsic wavelength of the material filling the slit

is much less than that of free space.

7.2. TE Case

For the TE case the magnetic current sheets El and yz are z directed.

and Fz respectively, then from image theory,

If they are constant on Fl

the fields in region b are given by +X and -X travelling plane waves. The

currents M. and M, become unbounded at the ends of Pl and Fz but this is a

28 2
very localized phenomenon, particularly when region b is a dense material.
Thus if w >> Ab’ the magnetic currents should be constant enough to neglect

the x component of electric field.
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These remarks lead to the assumption for the z directed magnetic

field as
-jk, x jk x
H:=Ae “ +13ekb 7-7
where A and B are constants. Computing E; from Eq. (7-7) and satis-
fying the boundary conditions at x = 0 and x = d, one obtains
. cos kb(x - d)
& & i - < <
z nb e kbd if (n-1)A <y < nA
1h,1 i (7-8)
Ez (Ein)
0 if y is elsewhere
where & is defined by Eqs. (6-16). Thus Eqs. (7-3) and (7-4) take
the simple form of
P B (7-9)
11" mn J [} nb kb mn
and
LR W e (7-10)
21'mn % n, ¢ %% “mn

where § =1 ifm=nandd =0 form # n.

mn mn

These equations may be obtained by an alternative method. Since
Ex is assumed negligible, conducting planes may be placed at y = nA for
n=1,2,..., N, so that each magnetic current expansion function radiates
inside the closed conducting box 0 < x < d, (n-1)A < y < nA. Special-
izing Eqs. (6-21) and (6-22) to this problem, one obtains Eq. (7-8).

The p = 0 term is the only non-zero term.




il

7.3. TM Case

For this polarization, the magnetic current sheets are y directed
and even if M, and M, are assumed constant over Fl and Fz, the field in-
side region b is not represented exactly by a plane wave. If one con-

siders the constant magnetic current distribution M. = K § radiating

1

inside the closed conducting box 0 < x < d, 0 <y < w, then one may

express the fields inside the box as

sin ( /1 - (kbw kb(x~d))
sinv/; - qg;;

o s ( /1 - (@48 ) kb(x-d))
) SR cos BEL

sin R%X (7-11)

H e i (7-12)
X Jkynyw = n (-k%"-)zkbd w
V w
cos [1 - kb(x-d)
w
H = z (1. 2 - 1 )2 kb giy BEE

y - =) w . w
" p= % sin [1 - kbw) kg d

(7-13)
Since Hx has no average value on 0 < y < w, and if kbw >> 1, it is
reasonable that one could neglect Hx as compared to Ez and Hy.
If only Ez and Hy are considered in region b, then, one may pro-
ceed with the plane wave assumption as before to obtain
e (Y) cos (x~-d)
=1
HOREE . (n-1) <y < (atD)A (7-14)

nb sin kbd
where glnis given by Eqs. (6-29). Thus for Eqs. (7-3) and (7-4),

one obtains
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Py e bR ot (7-15)
11"mn s Ny kb Ymn
|4 and
| (Yb ) £ ik A 29 d (7-16
| 217mn JonCSCkamn -16)
5] b ]
! where
1
3 % if |m-n|l =1 ]
]
Fooh = 2 '
Lo 3 if m=n (7-17)
0 otherwise
Alternatively, since Ex = 0, and Ez =0 at y = (n-1)A and

y = (n+l)A for each expansion function Eln’ conducting planes may be

placed at the ends of each e, so that each radiates inside the

1n Eln
closed conducting box (n-DA< y < (n+l)A. Specializing Eqs. (6-34)

and (6-35) to this problem, one obtains

1h.1 ‘8 o kx cos kx (x-d) 5
B (_e_ln) =—JT z P 5 P sin oA sinpi— (7-18)
o B pe1  (pr) sin k4
Xp
p odd

zZ .2 _ pu2 _
where kxp kb (ZA) . Keeping only the p = 1 term, one obtains for

Eqs. (7-3) and (7-4) the following formulas

n
b . o a
(Yll)mn - JkoA My Reo Bkbd Yan (7-19)
P = e d =2 @ escBkd (7-20)
21’mn o nb b Ymn
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¥ Chapter 8

NUMERICAL RESULTS AND DISCUSSION

8.1. Modal and Non-Modal Results

Some representative computations are presented here for

-

filled slits of various cross sections. The cross section shapes

A

and their dimensions are shown in Figs. 14-16. A comparison will

first be made between the results obtained from the non-modal solu-
tion of Chapters 1 to 4 and the modal solution of Chapter 6. The
quantities to be compared are the magnetic current on the aper-

ture faces Fl and F3 and the electric current on the contour C
defining the slit cross section. This electric current, which appears

as an unknown in the non-modal solution, is computed in the modal

solution by first solving for the magnetic currents. Then, using
parallel plate guide modes, the tangential magnetic field due to
these magnetic currents radiating inside a closed two-dimensional
A conducting box is computed just inside the contour C. This corre-
sponds directly to the electric current unknown in the non-modal

solution. The magnitudes of the electric current times no and the

magnetic current are plotted as a function of their position on the 1

.contour C (cf. Fig. 4). Horizontal and vertical lines are used to

F denote quantities expanded by pulses while straight lines connect the
points given by the triangle expansion functions. Each line Pi com-
prising the contour C is broken up into Ni+1 - Ni straight line seg-

ments which are shown scaled in the figures. The excitation consists
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of a plane wave incident from the left of the slits at an angle ¢i
measured with respect to the negative x axis.

The first example to be considered is a slit of rectangular
cross section of width w = 0.8ko and thickness d = O.ZXo (Xo being the
wavelength in free space). Regions a, b, and ¢ are always assumed to
be free space unless otherwise specified. Excellent agreement is noted

between the two solutions for the TE case when Eb = eo in Figs. 17 and

18 and when € = 580 in Figs. 19 and 20. A numerical check is made on

the solution, if region b is lossless, by testing to see if conserva-
tion of power flow holds at the two aperture faces. Thus the real

parts of the Poynting vector flux at I',, denoted by Pt , and I',, de-

1’ 1 3
noted by Pt3’ are computed. They are compared by the number AP defined

as

P - P
tl t3 9 (8-1)

AP = 100 .
(Byy + Bpgd)/2

which should be as small as possible. This number is computed readily
in the non-modal solution and is given, when appropriate, in the figure
captions of the computed examples. Cases for which the computation
(8-1) is not reliable is when the slit is cut off in the TM case and
the imaginary part of the Poynting vector flux is much greater than the
real part.

Two TM cases of the previous example are shown in Figs. 21 and 22
where agreement between the magnetic currents is again excellent. The
noticeable difference between the two solutions occurs in the electric

current at the ends of the illuminated aperture face Fl. An analysis
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of the field near the edges following the procedure of Meixner [28]
shows that the magnetic current should approach zero with an infinite
slope right at the ends of Fl' Also, the electric curtent should
become singular at these points. An explanation as to why the com-
puted non-modal TM electric current doesn't behave as expected at

the ends of the aperture face lies in the fact that the edge behavior
of the magnetic current is not represented adequately by the tri-
angle expansion functions. They constrain the magnetic current to
approach zero linearly at the ends of the aperture. The modal compu-
tation of this electric current, however, always gives a zero value
of electric current at y = 0 and y = w because of the nature of the

modal expansion. This modal computation converges non-uniformly to

the electric current at these points.

To illustrate a more detailed behavior of the aperture fields,
a smaller slit (w = O.ZAO, d = O.ZAO) is considered where the number
of unknowns is the same as in the previous example. 1In Figs. 23-26,
for the TE case, the agreement in the electric current from the two
solutions is still excellent. For the magnetic current, however, a
slight oscillation is present in both solutions, the greater vari-
ation being noticed in the non-modal results. For a slit of this
size, it is not expected from physical considerations that the true i

solution would have any oscillatory behavior. It is thus concluded

that this anomaly is a characteristic of the numerical solution even
though the numerical values for AP are small. The TM cases for this

example are shown in Figs. 27-29 where the modal electric current was
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computed at 50 points along each line Ti of C. Results from both
of the solutions compare well except for JP at each aperture face Pl
and Ié.The oscillatory behavior in the electric current from the
modal solution is due to the triangular representation of the mag-
netic current which has a pulse representation of magnetic charge.
This results in a logarithmic singularity in the y component of
magnetic field at each break point of the triangles and hence
accounts for the difficulty in computing the electric currents on
Fl and F3 by parallel plate guide modes. The agreement between
electric currents on Fz and Pa is quite good and the expected
behavior at the edges is observed. For the x component of magnetic
field, the modal series converges quite rapidly. The effects cof
increasing the dielectric constant in region b until there is a

propagating TM mode are also noticed in Figs. 27-29.

The preceding results for slits of rectangular cross sections,
which have received extensive consideration in the literature, gives ]
one an idea of how these two different solutions compare for this
simple cross section. As a further check, the modal and non-modal r
solutions for the slit cross section of Fig. 15 are compared. Here i
we have a cross section composed of two rectangular regions which
may be solved readily by either method. For the TE case shown in
Figs. 30 and 31, excellent agreement is obtained for all quantities
computed. Slight oscillations are again noticed in the results for

the magnetic currents. Some loss is added- to t he material filling

i

region b (ab = (l-j)eo) in Figs. 32 and 33 which corresponds to a
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conductivity of 0.017 siemens/meter. Agreement between the two
solutions is again quite good. The TM results for this example
are shown in Figs. 34-37 where the magnetic currents from the
two solutions are seen to agree quite closely. There is more
discrepancy between the electric currents where the

largest differences occur right at the corner of the cross
section on line PZ' To improve this, more expansion functions
are needed on Fz since the introduction of an edge there causes
tremendous changes in the fields close to the edge.

Allowing for a few discrepancies at some points on the
contour C, agreement between the computed quantities in the pre-
vious examples is, in general, quite good. In fact, as far as
the transmitted fields in region c are concerned, tliere is negli-
gible difference between the two solutions for a given problem.
Figures 38-41 show some plots of transmission coefficient versus
plane wave angle of incidence (as measured from the negative x-axis)
for some of the previously considered slits.

The primary advantage of the non-modal solution is that it
may be used to solve slits whose cross sections cannot be broken up
exactly into rectangular sub-regions. Figures l6a-h show some slits
of various cross sections, some of which are similar. Figures 42
and 43 show the effects on the radiation patterns in region c if
the cross section is changed so that some of the conducting plane

pushes into the rectangular cross section. These perturbed cross
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sections are shown in Figs. 16b,c, and e. The overall effect is
to shift the patterns slightly upward in the TE case while almost
no effect is noticed in the TM case. If the rectangular cross

section is changed so that some of the conducting plane material

is carved out, thus making region b bigger, a much more noticeable ?
upward shifting of the pattern is noticed in Fig. 44. There is

again a negligible change in the TM slit patterns for those cases.

Lastly, Fig. 45 shows the patterns for the slits of Figs. 16d, f

and g when the plane wave is incident at an angle of 45°.
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Fig. 14. Slits of a rectangular cross section. Dimensions are in
units of A .
o
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Fig. 15, Slit cross section made up of two rectangular regionms.

Dimensions are in units of ko.
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Fig. 38. TE Transmission coefficients vs. ¢1 for slit of
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Fig. 39. TE transmission coefficients vs. ¢i for rectangular
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d =
slit w= .8\ , d= .2X , € =¢€ .,
o o b o

.ZAO (circles) and rectangular
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Fig. 42, TE gain and normalized field patterns for slits of
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Figs. 16a, b, ¢, and d for ¢i = (0°,
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GAIN PATTERN

Fig. 44. TE gain and normalized field patterns for slits of
F Figs. 16a, f, g, and h for &1 = 0°.
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8.2. Slit Impedance and Equivalent Circuit for TE Case

When the slit cross section is rectangular, several approximate
solutions for the transmission characteristics are readily available
after making suitable assumptions. The first cases considered are
when regions a, b, and c are filled with free space and the slit width

=4 w is such that kow << 1. As discussed in Chapter 5, the transmission

v

.

characteristics may then be determined from a slit impedance for the
TE case, and a slit polarizability for the TM case. The TE case is
very important in electromagnetic shielding problems since there is
always a propagating mode in the waveguide region b. If the condi-
tion kow << 1 is satisfied and d > w then the two assumptions are made:

1) Each half space may be represented by a lumped

impedance.
2) Region b behaves like a uniform transmission line.

This suggests the equivalent circuit shown in Fig. 46. Regions a and c

= i
+ B +
Ia
V1 Za Isc Za V2
- d -

Fig. 46, Equivalent circuit model for rectangular slit when kow <<1. !
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are identical and are represented by the lumped impedance Za which

is defined by

v v

I 2
2l G (8-2)

a Ia 2

The excitation, Isc’ is equal to the negative of the electric current
which would exist at Fl if Tl were completed by a perfect electric con-
ductor. This is a form of the equivalence principle used by
Collin [30]. The voltages Vl and V2 are obtained by integrating
the eilectric 1ield (magnecic currents) across the aperture faces
Pl and P3 respectively. It is desired to find the slit impedance

~

defined by Eq. (5-28) which may be rewritten in terms of the equi=-

valent circuit parameters as

A
2
Z = C (§—3)
sc
From transmission line theory, one may easily obtain
ol - =) KBy
o 2z “cos kd + j(l+z “)sin kd

where z = Za/no and no is the characteristic impedance of free space.
The circuit parameter Za is found by computing the impedance for an
infinite flange (d > ) when kow << 1. 1If one assumes a constant
electric field in the aperture equal to unity [24, p. 180], the re-

sult is
A
0
= Ykow
wlm - 2§ 1n ( )]

2e2

where ¥y = 1.781 and e = 2.71828... Another formula, based on a static

~N

“a (8-5)
Y“O
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solution of the flange problem, is given by [31]

Za Ao
[ o
w[m = 2j 1n ( om )]

For comparison purposes, one last formula is obtained which uses |
the assumption that the electric field in the aperture is that
obtained for a slit in a zero thickness conducting plane [32] and
is given by

Za Ao

ﬁ; i Yk w (8-7)

wlm - 2§ 1n ( 8°)]

For kow small enough, there is little difference between these
formulas.

The transmission coefficient may also be obtained from the
equivalent circuit by determining the power delivered to the load Za
at the distance d and dividing by the power delivered to the cir-

cuit by I when Z = n_. Thus one may obtain
sc a o

1= |2)? ref1/z)) (8-8)

o

Some plots of Z/no and T versus d/)\0 are shown in Figs. 47-49
for rectangular slits of various widths. The solid curves repre-
sent computations from the equivalent circuit in Fig. 46 where Za is
determined from Eq. (8-7). Circles and triangles are used to mark
results obtained from the modal solution of the rectangular slit
computed for each value of w and d. Agreement is excellent for slits
whose widths are even as large as 0.2%0. For wider slits, the slit

impedance Z loses its usefulness since it can no longer accurately
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it

TR e

determine the transmitted fields.

It is interesting to note that, as w becomes smaller, the
transmission coefficient tends to a peak value when d is close to
a multiple of AO/Z. These peaks approach a value of 1/wm for small
w which can be shown from the equivalent circuit. This behavior is
predictable in that a resonance condition is achieved when the
reactance of Za’ at the distance d, cancels that of Za at the source
Isc' Thus, even though very little incident energy impinges upon

the slit for small w, the transmission coefficient may be quite large

for some thickness d when compared to the d = 0 case.
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Fig. 47. Slit impedance and transmission coefficient vs. d/>\o
for w = .OSAO. Circles and triangles denote modal

results, solid lines denote equivalent circuit model.
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for w = O.ZAO. Circles and triangles denote modal

results, solid lines denote equivalent circuit model.

119




8.3. Plane Wave Approximate Solution

For wider rectangular slits, the plane wave approximation of
Chapter 7 is useful. Plots of transmission coefficient versus plane
wave angle of incidence are computed using this approximation (denot-
ed by solid lines) and using the modal solution (denoted by circles)
using a sufficient number of unknowns on each aperture face. A
relatively narrow TE slit (w = 1.410) is shown in Figs. 50a and b
where increasing the thickness from O.ZAO to 0.4A0 improves the plane
wave solution somewhat. Even closer agreement is noted as the width
is increased to 3.0)\o as seen in Figs. 50c and d. When the slit is
wide, the plane wave approximation is better justified from the
analysis given in Chapter 7. This is clearly seen in Figs. 5la and b
where eb = 306o so that the slit is about 5 %- times its free space
electrical width. A TM slit of width w = 1.4Xo is shown in Figs.
52a and b where it is again observed that increasing the thickness
d improves the plane wave solution. The wider slit w = 3Ao is shown
in Figs. 52c and d for the TM case. The effects of adding loss to the

material filling region b are shown in Figs. 53 and 54.
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TE transmission coefficients vs. ¢i for eb = 3080,
a) w = l.AAo, d = O.ZAO; b) w = l.élo, d = O.AXO.
Circles denote modal solution and solid lines denote

plane wave approximation.

122




‘uorjewrxoadde saem sueld 330usap SOUT] PIJOS PUB UOTINTOS

o o o o (0
tepow ajoudp SITIAT) * Y¥'0 =P ‘ YE =M (P * XZT°0=P ‘Y€ =M (D :Yy°'0= P

o o o q )
M AQ ¢ X2°0 = p 9 Nl =M Am ¢ 3 = '3 203 .me ‘SA SJUITOTJJ200 UOTISSTWsSuURI] KT *75 .w._n_m
(p) ()
JON30IINT 40 3TINY FON3QIaNT 40 370NY
Ft—t—t—t—t——t—+—T0"
+ +2°
.4.. +p°
<+ 4..@- l_l
<+ -rwu
4 Lot
U 2l S e = el
(q) (®)
3JIN3AIINI 40 37INY 06 3JON30QIONI 40 3TINY 9
3 t t e 2 U7

-0° 1

el

123




T X 10

1 [ — i A
IO Ll T L ] L] % + %

ANGLE OF INCIDENCE

Fig. 53. TE transmission coefficient vs. ¢i for w = 1.4) ,
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Fig. 54. TE transmission coefficient vs. ¢1 for w = 0.7X0,

d = 0.4% , g = (I-§)€ .

124




Chapter 9

CONCLUSIONS AND RECOMMENDATIONS

A non-modal formulation has been developed for studying elec-
tromagnetic transmission through a slit of arbitrary cross section
cut in a perfectly conducting ground plane of finite thickness. The
term "arbitrary cross section'" means that the two slit faces, repre-
sented by lines Fl and P3, are coincident with the planes x = 0 and
x = d, respectively, and that the rest of the cross section, lines
F2 and P4, may be specified in an arbitrary manner. After some modi-
fication, which is not undertaken in this report, the formulation can
also be applied to cases where the material filling the slit, and
hence lines Fl and F3, may p¥otrude out into the half space regions
a and c.

A modal solution is presented to treat slits with a cross
section which may be represented by a chain of two-dimensional rec-
tangular cavities which are coupled to each other by an aperture.
This chain coupling approach yields a block tri-diagonal matrix which
allows special computational considerations. In dealing with a cross
section composed of more than one rectangular sub-region, the same

number of parallel plate guide modes is taken in each sub-region to
compute the fields. This number is more or less arbitrarily picked

while checking to see that the real power flow across each aperture

face is essentially the same.

The above two formulations, which are also applicable when the

material filling the slit is lossy, are compared to one another in
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various examples. The advantage of the non-modal solution lies in
the arbitrary nature of the specification of the slit cross section
whereas the modal solution may be used when the material filling

the slit has certain types of inhomogeneities. The computational
effort is usually greater in the non-modal solution, especially as
the slit cross secton becomes larger. The convergence of the numeri-
cal solutions is only investigated in the sense that the mean differ-
ence between the two solutions is observed to decrease as the number
of unknowns is increased.

A brief exposition of some approximate solutions has also been
presented. It is well known that a small hole in a conducting plane
may be represented in terms of an electric and magnetic dipole moment.
For the two-dimensional slit, the TE case is of more importance than
the TM case, because there is then always a propagating mode in the
parallel plate cross section no matter how small the width. Here, a
slit impedance is defined from which one may compute the trans-
mission characteristics of the slit. Next, an equivalent circuit is
postulated, based on a transmission line model, in terms of the
aperture impedance of an infinite flange. It is found that this
equivalent circuit accurately models the slit for widths as large as
0.2 wavelengths. As the slit width becomes very small, the trans-
mission coefficient becomes very large for conducting planes whose
thickness corresponds to the distances at which the equivalent circuit
resonates. This circuit model, obtained for slits of a rectangular

cross section, could be extended to more complicated cross sections
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by using results from waveguide junction theory.

For slits whose cross section is again rectangular but whose
widths are large with respect to the wavelength in the material
filler, a so-called plane wave approximation can be used. This
greatly simplifies the block tri-diagonal matrix which arises in
the modal solution and allows very rapid computation. It is found
that this approximation yields accurate results when kbw >> 1 and
is slightly better in the TE case. This approximate solution cgu}q_.
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also be applied to slits which are filled with layers of dense
material.

Three computer programs have been written which implement the
non-modal, modal, and approximate solutions discussed in this report.

They are listed and documented in [34].
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r Appendix

NUMERTICAL APPROXTMATION OF INTEGRALS

In Chapters 3 and 4, several integrals appear which must be
computed numerically. These integrals are defined on straight line
. segments in the x-y plane. The Hankel functions Héz)

3 encountered in the integrands and, since they are computed using

and Hfz) are

polynomial approximations [29], it is natural to choose a quadra-

ture formula which gives the highest degree of precision for inte-

grating polynomials. Thus the well kngwn Gamssian quadratuft
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formulae [33] are used. With reference to Fig. 5, consider the
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integral
t

n+1
In = f F(lz_— Ef()dt' (A-1)
t

n

where r is a field point not on ACn, r' is a source point on ACn, and

F is a well defined function on ACn. Rewriting r' as

Y =

gt - s

R £
- =N
where Bn is a vector from the origin to the midpoint of ACn one may

rewrite (A-1) as

ac_ ac_
= — - —— L & v -
el = JF(I;_ 5 w'E I_{nl)du (A-2)
-1
AC
where t' = —Eﬂ-u'. This is now in the form to approximate by
AC g AC
n o) O R . i
I %3 L Ag F(|x 3 Uy By gﬁl) (a-3)
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v
where ugq) are the roots of the Legendre polynomial of degree Q
), _
PQ(uj ) =0
2 and A§Q) are the weighting coefficients determined by
2
L, a? - @2 @,2
<4 1 2 (] Q
‘ (1 (uj )][PQ(uj )]

'3
Tables of u§Q) and A;Q) for various values of Q are readily available
[33, p. 337]. The foregoing rule can be applied in succession to
multiple integrals. For example, if In is well defined on ACm, then

we have the formula

t
m+1 ACAC Q Qq AC
J Lden —B B 7§ @ @ pTm @

n " 4 P e j 2 i -m
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